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Abstract

Background: Therapeutic blood plasma concentrations of anti-malarial drugs are essential for successful treatment.
Pharmacokinetics of pharmaceutical compounds are dependent of adsorption, distribution, metabolism, and excretion.
ATP binding cassette (ABC) transport proteins are particularly involved in drug deposition, as they are located at
membranes of many uptake and excretory organs and at protective barriers, where they export endogenous and
xenobiotic compounds, including pharmaceuticals. In this study, a panel of well-established anti-malarial drugs
which may affect drug plasma concentrations was tested for interactions with human ABC transport proteins.

Methods: The interaction of chloroquine, quinine, artemisinin, mefloquine, lumefantrine, atovaquone,
dihydroartemisinin and proguanil, with transport activity of P-glycoprotein (P-gp), breast cancer resistance protein
(BCRP), bile salt export pump (BSEP) and multidrug resistance-associated proteins (MRP) 1–4 were analysed. The
effect of the anti-malarials on the ATP-dependent uptake of radio-labelled substrates was measured in membrane
vesicles isolated from HEK293 cells overexpressing the ABC transport proteins.

Results: A strong and previously undescribed inhibition of BCRP-mediated transport by atovaquone with a 50%
inhibitory concentration (IC50) of 0.23 μM (95% CI 0.17-0.29 μM) and inhibition of P-gp-mediated transport by
quinine with an IC50 of 6.8 μM (95% CI 5.9-7.8 μM) was observed. Furthermore, chloroquine and mefloquine were
found to significantly inhibit P-gp-mediated transport. BCRP transport activity was significantly inhibited by all
anti-malarials tested, whereas BSEP-mediated transport was not inhibited by any of the compounds. Both
MRP1- and MRP3-mediated transport were significantly inhibited by mefloquine.

Conclusions: Atovaquone and quinine significantly inhibit BCRP- and P-gp- mediated transport at concentrations
within the clinically relevant prophylactic and therapeutic range. Co-administration of these established anti-malarials
with drugs that are BCRP or P-gp substrates may potentially lead to drug-drug interactions.
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Background
ATP binding cassette (ABC) transporters are membrane-
bound proteins that allocate a wide variety of compounds
at the expense of ATP, even against steep concentration
gradients [1]. P-glycoprotein (P-gp/ABCB1), bile salt export
pump (BSEP/ABCB11), multidrug resistance-associated
proteins (MRP1-4/ABCC1-4), and breast cancer resistance
protein (BCRP/ABCG2) are among the most important
drug transporters of the ABC protein family. ABC transport
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proteins are known for their capacity to protect the organ-
ism from potentially toxic xenobiotics through excretion,
thereby decreasing intracellular concentrations. Indeed,
typical localization of these export transporters are at
the blood–brain barrier, placenta, gut, and at the apical
side of liver and kidney cells. Two compounds may inter-
act with the same transport protein through induction of
expression, inhibition of protein function or competition
of substrates. Pharmacokinetics of co-administered drugs
can be critically altered when drug-drug interactions occur
at the level of the ABC transport proteins, as distribution
and selective excretion of these compounds may depend
heavily on ABC protein-mediated transport. This can be
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reflected either in unexpected high blood plasma con-
centrations potentially causing toxic effects, or subther-
apeutic concentrations at the site of action, diminishing
therapeutic effects.
It is essential to assure effective blood plasma concen-

trations upon treatment with anti-malarial compounds
in order to cure severely ill patients and prevent resistance
acquisition through exposure of the parasite to sublethal
blood plasma concentrations. The first-line treatment as
recommended by the World Health Organization (WHO)
currently consists of artemisinin-based combination ther-
apy [2]. However, resistance against these regimens has
been detected and the number of anti-malarials that can
be subsequently applied are limited [3]. Toxic effects by
unintended elevated blood plasma concentrations, how-
ever, should also be avoided.
Direct interaction with ABC transporter capacity of anti-

malarial compounds has not been explored in detail.
In vitro assays have indicated a possible effect on P-
gp-mediated transport or expression after exposure to
chloroquine, quinine, mefloquine, primaquine, amodia-
quine, piperaquine, artemisinin, and dihydroartemisinin,
however, contradictory conclusions concerning the inter-
action of anti-malarial compounds with ABC transport
proteins could be drawn from different experimental
set-ups [4-9]. A possible interaction of anti-malarial com-
pounds with MRP-type transporters and BCRP has also
been described [10-13]. Co-administration of anti-malarial
compounds with other drug types is highly anticipated.
For instance, human immunodeficiency virus (HIV) and
malaria co-infections are likely to occur, as there is a high
overlap in geographical dissemination [14]. Therefore, the
effect of anti-malarial compounds on ABC-mediated
transport capacity should be explored in more detail in
order to secure the most effective treatment strategies
for patients receiving multiple drug regimens.
In this study the direct interaction of a panel of eight

well-known anti-malarial compounds (chloroquine, quin-
ine, artemisinin, mefloquine, lumefantrine, atovaquone,
dihydroartemisinin, and proguanil) with transport activity
of P-gp, MRP1-4, BCRP and BSEP in a vesicular over-
expression transport assay have been analysed. Anti-
malarials (100 μM) that caused a decrease in substrate
transport larger than 66.7% were further characterized
to determine their 50% inhibitory concentrations (IC50).
Potent and previously undescribed inhibition of BCRP-
mediated transport by atovaquone and P-gp-mediated
transport by quinine was observed at concentrations within
their therapeutic range.

Methods
Materials
[6,7-3H(N)]Estrone-sulphate ammonium salt ([3H]-E1S,
specific activity 45.6 Ci/mmol), Tauro[carbonyl-3H]Cholic
Acid sodium salt ([3H]TCA) (5 Ci/mmol) and [6,7-3H(N)]
Estradiol 17-β-D-glucuronide ([3H]-E217βG) (34.3 Ci/
mmol) were purchased from PerkinElmer Life and
Analytical Sciences (Groningen, Netherlands). [3H(N)]-me-
thyl quinidine ([3H]-NMQ) (80 Ci/mmol) and unlabelled
NMQ [N-methyl-quinidine] were purchased from Solvo
Biotechnology (Szeged, Hungary). Bac-to-Bac and Gateway
systems, Dulbecco’s modified Eagle’s medium, GlutaMAX-I
culture medium, and foetal calf serum were purchased
from Life Technologies (Bleiswijk, Netherlands). Primers
were purchased from Biolegio (Nijmegen, Netherlands),
and a plasmid purification midiprep kit was from Genomed
(Löhn, Germany). Triple flasks (500 cm2) were purchased
from Sanbio BV Biological Products (Uden, Netherlands).
Estradiol 17-β-D-glucuronide (E217βG), estrone-sulphate
(E1S), taurocholic acid (TCA) adenosine 5’-triphosphate
magnesium salt (bacterial source), goat-anti-mouse IgG
antibody IRDye 800 and goat-anti-rabbit Alexa 680
secondary antibodies, chloroquine (CQ), quinine (Q),
artemisinin (ART), mefloquine (MQ), lumefantrine (L), ato-
vaquone (ATO), dihydroartemisinin (DHA), and proguanil
(PG) were purchased from Sigma-Aldrich (Zwijndrecht,
Netherlands). Protein concentrations were determined with
a Bio-Rad protein assay kit from Bio-Rad Laboratories
(Veenendaal, Netherlands), and 96-well filter plates were
purchased from Millipore (Etten-leur, Netherlands).

Baculovirus generation
Human P-gp, BCRP, BSEP and MRP1-4 had previously
been cloned into the Gateway pDONR221 vector.
Sequences matched accession numbers NM_000927,
NM_004827, NM_003742, NM_004996, NM_000392,
NM_00378, and NM_005845 respectively [15-19]. Some
sequences did hold silent mutations of described polymor-
phisms. Gateway cloning was used to transfer the genes
into a VSV-G improved pFastBacDual vector for mamma-
lian cell transduction. The production of baculovirus was
executed according to the Invitrogen Bac-to-Bac manual.

Cell culture and transduction
HEK293 cells were grown to 40% confluency in Dulbecco’s
modified Eagle’s medium-GlutaMAX-I containing 10%
foetal calf serum at 5% CO2 in 500 cm2 triple flasks.
Culture medium was removed and 25 mL of medium
combined with 10 mL virus was added and incubated at
RT for 20 min, followed by the addition of another
40 mL of complete medium including 5 mM sodium
butyrate to enhance protein expression.

Membrane vesicle isolation and protein analysis
Cells were harvested three days post transduction by a 5-
min centrifugation step at 3,000 g. Cells were resuspended
in ice-cold hypotonic buffer (0.5 mM sodium phosphate,
0.1 mM EDTA, pH 7.0) containing protease inhibitors
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(100 mM phenylmethylsulfonyl fluoride, 5 mg/ml aproti-
nin, 5 mg/ml leupeptin, 1 mg/ml pepstatin and 1 mg/ml
E-64) and shaken at 4°C for 30 min. This lysate was
centrifuged 100,000 xg for 30 min at 4°C, after which
the pellet was homogenized in ice-cold TS buffer
(10 mM Tris-HEPES and 250 mM sucrose, pH 7.4)
supplemented with protease inhibitors described before
using a tight-fitting Dounce homogenizer for 25 strokes.
Two subsequent centrifugation steps at 4°C of firstly
20 min at 4,000 g followed by supernatant centrifugation
for 60 min at 100,000 g ensured harvesting of the mem-
brane fraction. The pellet was resuspended in ice-cold
protease free TS buffer and passed 25 times through a
27-gauge needle to enhance membrane vesicle formation.
Protein concentration in these vesicles was determined
using the Bio-Rad protein assay, vesicles were flash-frozen
in N2 and stored at −80°C.

Vesicular transport assays
A rapid filtration technique that has been described earlier
was applied to evaluate uptake of transporter specific
substrates into the vesicles; NMQ for P-gp, E1S for
BCRP, E217βG for MRP1-4 and TCA for BSEP [20].
Briefly, 0.015-0.15 μCi of labelled substrate was combined
with unlabelled substrates to a concentration of 0.1-1 μM
in a 30 μL reaction mixture with 4 mM ATP, 10 mM
MgCl2 and 7.5 μg total protein membrane vesicles in TS
buffer. Transport was allowed by transfer of the plates to
37°C during 1–5 min, a time-point within the linear phase
of time-dependent transport, as previously determined
[15-19]. Hereafter, the reaction was rapidly stopped by
placing the plates back on ice and the addition of 150 μL
ice-cold TS buffer. Samples were subsequently transferred
to a 96-well filter plate that had been pre-incubated with
TS buffer, and filtered using a multiscreen HTS-vacuum
manifold filtration device (Millipore). Filters were washed
and extracted, after which 2 mL scintillation fluid was
added to each filter. Radioactive signal on the filters
was determined by liquid scintillation counting. Negative
controls included eYFP-transduced vesicles and AMP
instead of ATP in the reaction mixture.
In the first screen, all anti-malarial compounds were

added to the reaction mixture to evaluate transport
inhibition at a concentration of 100 μM. Solvents were
used as negative controls, as CQ was dissolved in milliQ,
Q and ART in methanol, MQ, L, ATO and DHA in DMSO
and PG in 50% ethanol. When ATP-dependent uptake was
reduced more than 66.7%, the compound was considered a
potential inhibitor, and multiple concentrations were tested
in the reaction mixture to determine the IC50 value. All
concentrations were tested in duplicates or triplicates in
two individual biological replicates containing vesicles
of independent transductions. Results were depicted
and statistically analysed using Graphpad Prism, version
5.03. IC50 values were determined by nonlinear regression
analysis of (log) inhibitor-response curves with variable
slope. Maximal transport was restricted to 100%, and the
minimum was set to be equal or greater than 0%. Statis-
tical analysis was performed using IBM SPSS Statistics 20,
applying one-way ANOVA (Analysis of variance).

Results
Inhibitory profile of anti-malarials against ABC transporter
activity
The inhibitory characteristics against the ABC transporters
of eight well-known anti-malarials; CQ, Q, ART, MQ, L,
ATO, DHA and PG, was investigated at a 100 μM concen-
tration. For each transporter protein, specific radio-labelled
substrates were applied to measure ATP-dependent trans-
port into the vesicular overexpression system; N-methyl
quinidine (7nM radio-labelled diluted with 90 nM non-
radio-labelled) for P-gp, estrone sulphate (74 nM) for BCRP,
estradiol 17-β-D glucuronide (150 nM) for MRP1-4 and
taurocholic acid (1 μM) for BSEP [16-19].
A significant inhibitory effect of 100 μM CQ, Q, MQ

and PG on P-gp-mediated NMQ transport was observed.
CQ reduced NMQ transport to 50% (p < 0.001) and PG
to 76% (p < 0.001), whereas Q and MQ gave more pro-
nounced inhibitory effects to 15% (p < 0.001) and 30%
(p < 0.001) P-gp-mediated NMQ transport, respectively.
ART and DHA slightly induced transport activity to 131%
(p < 0.001) and 112% (p = 0.033), respectively (Figure 1A).
All anti-malarials inhibited BCRP-mediated estrone sul-
phate transport activity at 100 μM concentrations. Most
potent inhibitors were MQ, ATO and PG, which reduced
estrone sulphate transport to 8.5%, 22% and 36% with
p < 0.001, respectively (Figure 1B). CQ reduced transport
to 69%, Q to 45%, ART to 62%, L to 44%, and DHA to
70% of solvent-exposed BCRP-mediated transport cap-
acity (p < 0.001). Significant inhibition of taurocholic acid
transport by BSEP was observed for ATO, which reduced
uptake to 54% (p < 0.001) and MQ, which reduced uptake
to 72% (p = 0.037). Furthermore, induction of BSEP trans-
port activity was found for CQ (117%, p < 0.001), ART
(117%, p < 0.001) and DHA (114%, p < 0.001) (Figure 1C).
MQ was found to have a modest but significant inhibitory
effect on estradiol 17-β-D glucuronide transport by MRP1
as this was reduced to 50% (p < 0.001), whereas ATO
was observed to induce this process to 141% (p < 0.001)
(Figure 1D). Induction was also observed for ART and
ATO on MRP2-mediated estradiol 17-β-D glucuronide
transport to 151% (p = 0.015) and 162% (p = 0.020), respect-
ively. However, no significant inhibition was measured
for any of the anti-malarials tested (Figure 1E). MRP3-
mediated translocation of estradiol 17-β-D glucuronide
was significantly inhibited by MQ at a 100 μM concen-
tration to 70% (p = 0.001), whereas ART and DHA induced
this process to 122% (p = 0.016) and 121% (p = 0.020),



Figure 1 Inhibitory effect of anti-malarial drugs on ABC transport activity. The inhibitory effect of 100 μM of CQ, Q, ART, MQ, L, ATO, DHA
and PG on ABC transporter activity was assessed. Transport was measured in pmol/mg protein/min and expressed as percentage of solvent
controls, which represent 100% transport. Bars with * are significantly different from solvent controls, p < 0.05. A P-gp-mediated transport of NMQ
was significantly inhibited by CQ, Q, MQ and PG, and increased by ART and DHA. B BCRP-mediated transport of E1S was significantly inhibited by
all compounds, most pronounced inhibitors were MQ and ATO. C BSEP-mediated transport of TCA was significantly inhibited by ATO, but not by
the other anti-malarials. Induction of transport was observed for CQ, ART and DHA. D-G MRP1-4-mediated E217βG transport. MQ significantly
inhibited MRP1 and MRP3 transport activity. Furthermore, induction of MRP1 mediated transport was found for ATO, which, together with ART,
also stimulated MRP2 transport activity. MRP3 mediated transport was stimulated by both ART and DHA. Inhibition larger than 66.7% was found
for Q and MQ on P-gp transport, as well as MQ, ATO and PG on BCRP transport activity (highlighted bars).
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respectively (Figure 1F). No significant estradiol 17-β-D
glucuronide transport inhibition of MRP4 could be
detected (Figure 1F). As the 100 μM concentration is not
within the physiological range of compound exposure, the
most potent inhibitors were selected for further investiga-
tion. Inhibition of Q and MQ on P-gp-mediated transport,
as well as BCRP inhibition by MQ, ATO and PG, were
studied in more detail to determine their potencies.

Determination of inhibitory potency of strong inhibitors
Subsequently, transport inhibition assays were performed
for a larger concentration range of Q, MQ, ATO and PG
to evaluate P-gp or BCRP activity. Inhibition of transport
was measured in a similar fashion applying the same
specific radio-labelled substrates. Drug concentrations
were logarithmically depicted, and a sigmoidal, inhibitor-
response, variable slope equation was fitted to the data
to determine the inhibition curve. Maximal inhibition
to 0% transport was not always reached, which might
be due to endogenous transport present in the vesicular
membranes.
The strongest inhibitory effect for ATO on BCRP-

mediated transport was found at median nanomolar
range. Transport of estrone sulphate was inhibited with
50% by this compound at 0.23 μM (95% CI 0.17-0.29 μM)
(Figure 2A), whereas MQ and PG required the addition
of 18 μM (95% CI 17–20 μM) (Figure 2B) and 118 μM
(95% CI 93–148 μM) (Figure 2C) to achieve a similar
effect on BCRP activity, respectively. Also for the other
compound-transporter combinations, IC50 values were
found in the low to median micromolar range. The
effect of Q on P-gp-mediated NMQ transport inhibition
was the strongest, and the IC50 was defined at 6.8 μM
(95% CI 5.9-7.8 μM) (Figure 2D). MQ was a less potent
inhibitor with an IC50 of 72 μM (95% CI 49–104 μM)
(Figure 2E). The inhibitory concentration of ATO and
Q transport were within the therapeutic range of blood
plasma concentrations after both prophylactic and curative
anti-malarial dosing.

Discussion
In this study, the interaction of anti-malarial compounds
CQ, Q, ART, MQ, L, ATO, DHA and PG with the activity
of P-gp, BCRP, MRP1-4 and BSEP ABC transport proteins
were investigated. ATO was found to be a strong inhibitor
of BCRP-mediated transport, which has not been described
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previously. Also Q was identified as a potent inhibitor
of P-gp-mediated transport. In addition, subtle alterations
on transporter activity have also been identified for other
compound-transporter combinations, both inhibitory and
stimulating. These interactions can be either competitive
or non-competitive. Allosteric interactions that stimulate
transport have been observed for several ABC trans-
porters and are substrate dependent, due to which
translation of these results to other transporter-substrate
combinations is difficult.
A 50% inhibition of BCRP-mediated transport activity

could be achieved with 0.23 μM ATO. This concentration
is easily reached in blood plasma during both prophy-
lactic and therapeutic use of ATO, as maximal ATO
blood plasma concentrations are around 14 μM (range
8–26 μM) after a daily prophylactic dose of 250 mg
[21]. Although the free concentration of ATO is reduced
due to its high plasma protein binding, intracellular
concentrations at the target site may be higher. ATO is
used in a fixed combination with PG in Malarone®,
which is prophylactively prescribed to travellers, and at
higher dosages to treat falciparum malaria, especially in
regions of ACT failure [2,22]. BCRP is located primarily
on the apical side of excretory organs, and it is highly
involved in excretion of xenobiotics from the body [23,24].
As ATO is excreted into bile against steep concentration
gradients, involvement of ABC transport proteins such
as BCRP is likely [25] and interactions with ATO can
occur when elimination of co-administered therapeutics
is inhibited.
Indeed, cases of interactions with ATO have been

reported. The azithromycin AUC (area under the curve)
and maximal concentrations were lower in all patients
when taken in combination with ATO by HIV-1 positive
children [26]. Although direct interaction of azithromycin
with BCRP has not been investigated, interaction at this
level cannot be excluded. Moreover, a clear increase in
plasma concentration of etravirine, a reverse transcript-
ase inhibitor, and saquinavir, a protease inhibitor, was
observed in a Caucasian female who started malaria
prophylaxis with ATO/PG (250/100 mg) fixed dose com-
bination [27]. Etravirine and saquinavir were prescribed to
treat HIV1 subtype B in an antiretroviral combination ther-
apy, supplemented with raltegravir and maraviroc. AUCs,
during a 12-hour measurement interval, were increased
55% for etravirine and 274% for saquinavir, and peak
concentrations after administration of the antiretrovirals
was markedly increased. Saquinavir and etravirine have
previously been described as potent BCRP inhibitors,
but not substrates, with IC50 concentrations of 19.5 and
1.0 μM [28,29]. Both raltegravir and maraviroc do not
inhibit BCRP, indicating that interaction with BCRP is
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specific for saquinavir and etravirine [30]. An alternative
or complementary explanation could be interaction at the
level of Cytochrome P450 (CYP) enzymes, as PG is mainly
metabolized by CYP2C19 but also partly by CYP3A4,
saquinavir by CYP3A4 and etravirine mainly by CYP3A4
and to a minor extent by CYP2C9 and CYP2C19 [31-33].
Raltegravir is not metabolized by members of the CYP
family, however, maraviroc is a substrate of CYP3A4
[34,35]. A strong correlation at this level of drug inter-
action could therefore not be observed, stressing the
plausible role of transporter-mediated drug interactions.
Another study demonstrated a significant decrease in

ATO plasma concentration when taken in combination
with efavirenz, lopinavir/ritonavir or atazanavir/ritonavir
therapy [36]. Interaction at the level of metabolism through
glucuronidation was proposed. However, as ATO is only
marginally glucuronidated but mostly excreted unchanged
into the bile, interaction at the level of ABC transport pro-
teins and more specifically BCRP could play an important
role [25]. Indeed, efavirenz, lopinavir and atazinavir have
been described as inhibitors of BCRP-mediated transport
[37]. Lopinavir and efavirenz were found to be stronger
inhibitors, and correspondingly, ATO concentration was
decreased more drastically in these two combinations
compared to atazinavir co-administration.
Other pharmaceuticals that interact with BCRP-mediated

transport are fluoroquinolone antibiotics, kinase inhibitors,
cytostatics, antifolates, and statins [38-44]. Interactions with
ATO therapy might be anticipated when co-administered.
These drugs are not widely used in malaria-endemic areas,
however, interactions with prophylactic doses of ATO used
by travellers can be anticipated.
A 50% inhibition of P-gp-mediated transport by Q

was found at a concentration of 6.8 μM. Indeed, in
other in xvitro cellular uptake experiments Q has been
described to be both an inhibitor and a substrate of P-gp
[4,8,9,45-48]. The concentration at which Q was effective
was lower in the current study than previously described.
Most likely this can be attributed to the difference in
substrates used. Maximal plasma concentrations reach
30 μM during a seven-day regimen of 10 mg/kg oral
dose three times daily of quinine sulphate, and although
Q is bound to plasma-proteins to some extent, clinically
relevant interactions at the level of P-gp-mediated trans-
port during quinine treatment may be expected [49].
Interactions with Q have been described for ritonavir/

lopinavir combination therapy as well as ritonavir mono-
therapy, and for nevirapine, rifampicin, cyclosporine,
and digoxin. Q co-administration with digoxin decreased
billary excretion of the latter, indicating specific involve-
ment of transport processes [50]. When co-administered
with ritonavir, Q blood plasma concentrations were
increased [51]. Ritonavir indeed is both a substrate and
inhibitor of P-gp, therefore interaction at this level may
explain the increase in Q concentration [52,53]. After
rifampicin, nevirapine and lopinavir co-administration, Q
blood plasma concentrations were decreased [49,54-56].
Rifampicin interacts with P-gp as substrate, inhibitor and
inducer, and lopinavir has been found to inhibit P-gp
[57-59]. However, this has not been shown for nevirapine.
Q is one of the oldest anti-malarial drugs still in use, and
although it is not used any more in first-line treatment
strategy, its use has increased as it is often applied as an
alternative treatment after ACT stock-outs [60]. Further-
more, for treatment of malaria infections in pregnant
women it is one of the few compounds that can be applied
safely [61]. Adherence to this compound is known to be
low due to the large range of common and often plasma
concentration-dependent side effects [62]. For these rea-
sons, establishing effective but non-toxic blood plasma
concentrations is essential in the treatment of malaria,
and interaction with co-administered compounds that
mediate P-gp transport should be tightly monitored.
Especially, the interaction of both ATO and Q with

antiretroviral medication could have severe implications
on treatment strategies for both infections, as HIV is
another major contributing factor to morbidity, especially
in sub-Saharan regions of Africa [14]. Many different anti-
retroviral compounds are being prescribed, depending
on personal characteristics and resistance status, and
for many of these compounds interactions with BCRP
have been described.

Conclusions
Anti-malarial compounds can reduce ABC transporter
activity. ATO appeared to be a potent inhibitor of BCRP
and Q of P-gp in vitro. Both compounds inhibited ABC
transporter activity at concentrations equalling prophy-
lactic and effective blood plasma concentrations. Potential
involvement in interactions with antiretroviral and anti-
biotic compounds have been described for ATO and Q,
which can be explained by the observed inhibitory effects
on BCRP and P-gp transport activity.
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