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Abstract

Background: Anti-malarial efficacy needs to be monitored continually to ensure optimal dosing in the face of
emerging anti-malarial drug resistance. The efficacy of artemisinin based combination therapies (ACT) is assessed by
repeated measurements of parasite density in the blood of patients following treatment. Parasite density is measured
from a capillary or venous blood sample, but this can be logistically and ethically challenging if multiple samples are
required within a short time period. The aim of this work was to apply optimal design theory to derive clinically
feasible blood sampling schedules from which parasite clearance could be defined using the Parasite Clearance
Estimator (PCE), a recently developed tool to identify and quantify artemisinin resistance.

Methods: Robust T-optimal design methodology was applied to offer a sampling schedule that allows for
discrimination across models that best describe an individual patient’s parasite-time profile. The design was based on
typical parasite-time profiles derived from the literature combined with key sampling constraints of no more than six
samples per patient within 48 hours of initial treatment. The design was evaluated with a simulation-estimation
procedure that implemented the PCE.

Results: The optimal sampling times (sampling windows) were: 0 (0 to 1.1), 5.8 (4.0 to 6.0), 9.9 (8.4 to 11.5), 24.8 (24.0
to 24.9), 36.3 (34.8 to 37.2) and 48 (47.3, 48.0) hours post initial treatment. The simulation-estimation procedure
showed that the design supported identification of the appropriate method by the PCE to determine an individual’s
parasite clearance rate constant (the main output calculation from the PCE).

Conclusions: The proposed sampling design requires six samples per patient within the first 48 hours. The derived
design requires validation in a real world setting, but should be considered for future studies that intend to employ
the PCE.

Introduction
The artemisinin derivatives remain potent agents in
the anti-malarial armamentarium. However, their effi-
cacy is under threat from emerging evidence docu-
menting reduced parasite sensitivity in Cambodia [1,2].
This alarming finding provides motivation for conducting
more efficacy and pharmacokinetic-pharmacodynamic
(PK-PD) studies of these important drugs to monitor their
efficacy and re-assess current dosing regimens.
A key pharmacodynamic measure of anti-malarial drug

efficacy is the measurement of parasite density in the
peripheral blood, usually determined by a finger prick
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sample and examination of a drop of blood by microscopy.
A variety of parameters are available for quantifying the
drug efficacy on parasite dynamics. Repeated measures of
parasitaemia can be used to determine the parasite clear-
ance time, defined as the time from the start of treatment
to a parasite count below the microscopy limit of detec-
tion. Analytical approaches to quantifying an individual’s
parasite clearance time vary although recently interest has
focused on the Parasite Clearance Estimator (PCE) [3], a
tool developed specifically to calculate a rate constant (the
parasite clearance rate constant, PCRC) from repeated
measures of parasitaemia. In brief, the PCE calculates the
PCRC by first fitting linear, quadratic and cubic regres-
sionmodels to an individual’s observed (log) parasite-time
data, and identifies which of these models provides the
best fit. If the best model is linear, the PCE declares the
PCRC as the absolute value of the estimated slope. If the
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best model is quadratic or cubic, the PCE performs an
algorithm to determine if the model’s predictions exhibit
an initial delay in parasite decline, and the PCRC is calcu-
lated as the absolute value of the estimated slope from a
linear model fitted to the subset of best model predictions
that display linearity over time. The PCRC is consid-
ered a robust proxy measure for an individual’s parasite
clearance time [4].
For the PCE to determine the appropriate method for

calculating an individual’s PCRC, blood sampling needs to
be frequent enough to provide means for model discrim-
ination (across log-linear, quadratic and cubic parasite-
time profiles) and allow the PCE to detect delays in
parasite reduction. Determining blood sampling sched-
ules in patients with uncomplicated falciparum malaria
treated with artemisinin-based combination therapies
(ACT) can be challenging, as it can be logistically and
ethically difficult to impose intensive schedules over the
timespan where parasites are above the limit of micro-
scopic detection (approximately 48 hours post initial
treatment [5-8]). Therefore a sampling schedule for the
PCE must be clinically feasible within the first 48 hours of
treatment and offer sufficient information for appropriate
implementation.
T-optimal designs offer a sampling schedule that allows

for discrimination across competing models. In brief, an

iterative procedure is used to achieve sampling times that
capture the largest differences across the specified com-
peting profiles. To date, analytical approaches to designing
efficacy (i.e. pharmacodynamics, or PD) studies, such as
optimal design methods, have not been applied to the
study of treatment response following anti-malarial ther-
apy. The aim of the current study was to use optimal
designmethodology to determine a clinically feasible sam-
pling design for future studies that intend to use the
PCE.

Methods
Determination of the design for the Parasite Clearance
Estimator
The PCE is defined on the basis of the PCRC, which is the
slope of the log (base e) parasitaemia-time relationship for
an individual patient, accounting for any initial delay in
parasite reduction [3]. Figure 1 provides a visual aid to the
PCE. For full details of the PCE, including the algorithm
it performs to detect an initial delay in parasite reduction,
see Additional file 1 and [3].
As a key aspect of the PCE is determining a “best”

model that describes the log parasite-time relationship
for an individual, a robust T-optimal design was deter-
mined for future studies that intend to use the PCE. A
robust T-optimal design determines a sampling schedule
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Figure 1 Graphical representation of the Parasite Clearance Estimator. The black lines represent typical log parasitaemia-time profiles (linear,
top left; quadratic, top right; cubic, bottom left), the dashed horizontal line indicates the microscopic limit of parasite detection and the parasite
clearance rate constant is the absolute value of the slope of the dashed maroon line.
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that provides means for model discrimination and has the
additional benefit of not assuming one of the models is
“true”. For further technical details of robust T-optimality
see [9]. The design was derived based on the following
specifications: (i) six samples per person over the first 48
hours of treatment (the suggested minimum for model
exploration [3]), and (ii) “typical” quadratic and cubic log
parasite-time profiles that were presented graphically in
[3] (i.e. Figure one in [3]). Flegg et al. also presented a “typ-
ical” linear parasite-time profile, but this was not consid-
ered in the optimization procedure since sampling times
at 0 and 48 hours (both taken routinely) would provide
enough information for detection of this model. It was
not stated in [3] how any of these “typical” profiles were
derived, but it was assumed that they were accurate sum-
maries of observed data. Since parameter values for the
typical profiles were not reported in [3], parameter val-
ues for the quadratic and cubic profiles were obtained by
digitizing points from their respective plots in [3] and fit-
ting quadratic and cubic regression models (respectively)
to these digitized data in Stata [10]. The results from these
analyses are given below in Equation 1. In the equation, P
represents total parasite count and t indicates time (hours
post initial treatment).

log(P) = 10.6 + 0.066t − 0.0034t2

+ ε, ε ∼ N(0, 0.402)
log(P) = 13.3 + 0.207t − 0.026t2 + 0.00038t3

+ ε, ε ∼ N(0, 0.402) (1)

Using these results, the following algorithm developed by
Vajjah and Duffull [9] was written and implemented in R
[11]:

1. Log parasite counts were simulated from the
quadratic model (with residual error) at a
pre-specified design (0, 6, 10, 24, 36 and 48 h; based
on visual inspection of the typical profiles).

2. A cubic model was fitted to the counts simulated
from the quadratic model.

3. Simulated annealing was used to find the design
points that maximized the residual sum of squared
differences between the counts arising from the
quadratic and cubic models.

4. Log parasite counts were simulated from the cubic
model (with residual error) at the optimized design
points obtained from step 3.

5. A quadratic model was fitted to the counts simulated
from the cubic model.

6. Simulated annealing was used to find the design
points that maximized the residual sum of squared
differences between the counts arising from the
quadratic and cubic models.

7. Step 1 was repeated, using the design points obtained
in step 6 and parameters obtained in steps 5 and 2.

The process was repeated until a convergence of design
points in step 6 was achieved between successive iter-
ations. Convergence was declared when the maximum
difference for any design point was less than 0.1 hours.
To provide flexibility with taking samples in the field,

sampling windows, which are time intervals that include
the optimal sampling times, were derived. The win-
dows were determined using the evaluation procedure
described in the next section.

Evaluation of the design for the Parasite Clearance
Estimator
The derived T-optimal design for the PCE was evalu-
ated using a simulation-estimation procedure to assess the
ability of the design to support the PCE in identifying the
correct method to calculate an individual’s PCRC. At the
time this work was completed the PCE was not publicly
available, hence the following procedure was coded and
implemented in R:

1. Log parasite count data were simulated at the
optimal sampling times from either a linear,
quadratic or cubic model with residual error (based
on the analysis of digitized data described above) and
between-subject variances (BSVs) on the model
parameters. The incorporation of BSVs was done to
provide a post-hoc assessment of the robustness of
the design, as BSVs were not considered in the
optimization procedure. Values for the BSVs were
chosen based on plausible simulated log
parasite-time profiles (displayed in the Results
section; see Additional file 1 for full details of the
simulation models). The structural model (linear,
quadratic or cubic) the data were simulated from was
considered the “true” model.

2. Linear, quadratic and cubic models were fitted to the
simulated data in step 1.

3. The model with the lowest AIC in step 2 was
considered the “best” model.

4. The procedure to identify the method to calculate
the PCRC (steps 2 and 3 from the PCE calculation
algorithm in Additional file 1) was adopted.

An individual iteration of this procedure was considered
successful if the appropriate method for calculating the
PCRC was identified. For example, if the linear model was
the “true” model, then the PCE should determine that the
PCRC should be the absolute value of the estimated slope
from a linear model (with a lag of 0). If the “true” model
was quadratic or cubic, then the PCE should detect the
lags in these models, and hence determine that the PCRC
should be the absolute value of the estimated slope from a
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linear model fitted to the subset of model predictions that
display linearity over time. See Figure 1 for a visual guide.
For each “true” model, the simulation-estimation process
above was repeated 1000 times (i.e. 1000 individual log
parasite-time profiles were simulated and then evaluated)
and the percentage of successful runs (i.e. the percent-
age of the 1000 individuals where the appropriate method
for calculating PCRC was identified) was recorded. An
acceptable success percentage was set to 85%.
Sampling windows for this design were determined

using the evaluation procedure. First, lower and upper
bounds for each optimal sampling time were specified
based on visual inspection of the typical profiles and
clinical feasibility. Second, a random sample was taken
from within each window, creating a new design, and
this new design was then evaluated with the simulation-
estimation procedure described above. This process was
repeated 100 times (i.e. 100 designs were evaluated with
the simulation-estimation procedure above), and the win-
dows were deemed acceptable if the median percentage of
successful runs across the 100 designs was at least 80%.

Results
Table 1 displays the optimal sampling times and cor-
responding sampling windows determined by robust T-
optimal methods. Figure 2 displays the design graphically,
as well as the competing quadratic and cubic log parasite-
time profiles the design was based on (a typical linear log
parasite-time profile is also displayed). The optimization
procedure captured the potential “lag” and “tail” phases
of the profiles as suggested by [3], as well as the routine
sampling times of 0, 24 and 48 hours.
Figure 3 displays summaries of the simulated log

parasite-time profiles used for the evaluation procedure
and Table 2 reports the results from implementing the
procedure. When the “true” log parasite-time profile was
specified as a linear model, the appropriate method to cal-
culate the PCRC (the absolute value of the estimated slope
from a linear model) was identified in 94% of the simu-
lated individual log parasite-time profiles. When the true
log parasite-time profile was specified as quadratic, the
appropriate method to calculate the PCRC (the absolute
value of the estimated slope from a linear model fitted
to the quadratic model predictions after the lag phase)

Table 1 Robust T-optimal design for the Parasite
Clearance Estimator

Optimal sampling times*

(sampling windows)

0.0 5.8 9.9 24.8 36.3 48.0

(0.0, 1.1) (4.0, 6.0) (8.4, 11.5) (24.0, 24.9) (34.8, 37.2) (47.3, 48.0)

*Hours post initial treatment.
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Figure 2 The derived robust T-optimal design for the Parasite
Clearance Estimator. The solid, dotted and dash-dotted lines
represent typical log cubic, quadratic and linear parasite-time profiles
(respectively), the dashed horizontal line indicates the microscopic
limit of parasite detection and the green circles and light green line
segments on the time axis represent the derived optimal sampling
times and windows (respectively).

was identified in 96% of the simulated profiles. When the
“true” log parasite-time profile was specified as cubic, the
correct method for calculating the PCRC (the absolute
value of the estimated slope from a linear model fitted to
the cubic model predictions between the initial and late
lag phases) was identified in 86% of the simulated profiles.
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Figure 3 Summaries of simulated log parasite-time profiles used
for the evaluation procedure. The green, purple and brown shaded
regions represent the 10–90th percentile ranges of the simulated
linear, quadratic and cubic log parasite-time profiles, respectively.
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Table 2 Evaluation of the robust T-optimal design for the
Parasite Clearance Estimator

Appropriate method to

True (simulated) log calculate the parasite clearance

parasite-time profile rate constant identified (%)‡

Linear 94

Quadratic 96

Cubic 86

‡Out of 1000 simulated profiles.

Discussion
For the first time, optimal design methods have been
applied to the study of treatment response following anti-
malarial therapy. The derived robust T-optimal design for
the PCE provided sufficient means for identifying appro-
priate sampling from which to calculate the PCRC. The
design is clinically feasible, requiring only six samples per
patient over the first 48 hours of treatment; two sam-
ples less than that suggested previously to detect an initial
lag in parasite reduction [4]. However the precise tim-
ing of the proposed schedule times may provide logistical
challenges in the setting of clinical field trials. Hence fur-
ther evaluation will be required to demonstrate that the
proposed design is robust, efficient and flexible.
The design was based on models that were fitted to

digitized data derived from the typical log parasite-time
profiles presented in [3]. Although this could be viewed
as a limitation (i.e. the models were not fitted to observed
data), this was one of the few ways parameter values
for the profiles could be obtained, since estimates of the
model parameters for these profiles were not reported in
[3]. After the completion of this work, a personal com-
munication with Flegg et al. revealed that the parameter
estimates from the analyses of digitized data were in fact
very similar to the parameter estimates from models fit-
ted to observed parasite-time data, thus providing support
for the models used for the designs. Another limitation
of this study was that the optimization procedure was
sensitive to initial design specification. However, the eval-
uation procedure, which simulated parasite-time profiles
frommodels that incorporated both between- and within-
individual variability, showed that the derived design pro-
vided sufficient support to the PCE in identifying the
appropriate method for calculating an individual’s PCRC.
This empirical finding provides support for the design
proposed in this paper, and highlights the importance
of empirical evaluation in optimal design development.
Furthermore, the evaluation procedure enabled derivation
and assessment of sampling windows, which may pro-
vide more informative windows than those defined by less
rigourous methods (e.g. visual inspection alone). Lastly,
the derived design is very similar to a reduced sampling

scheme determined by Flegg et al. that yielded accurate
and reliable estimation of parasite half-life via the PCE
[12].

Conclusions
The proposed robust T-optimal design provides guid-
ance for investigators wishing to employ the PCE, now
available online from WWARN [13]. As more parasite-
time profile data become available from different malaria
endemic regions where efficacy of the artemisinin deriva-
tives is declining, the proposed sampling strategy can be
re-evaluated and possibly revised to accommodate poten-
tially longer lag phases and/or delayed parasite clearance
times.

Additional file

Additional file 1: This file provides a description of the Parasite
Clearance Estimator and the details of the models used for simulation
in the evaluation procedure.
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